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LTHOUGH Alfano and Greer' have an elegant solution for

assessing whether two three-dimensional ellipsoids overlap,
which is both easy to understand and apparently straightforward to
test for numerically, this Comment offers some clarification regard-
ing the anticipated computational load and numerical sensitivity of
the test, which is claimed in Ref. 1 to be light enough for it to consti-
tute areal-time test. The implied eigenvalue—eigenvector calculation
usually involves an iterative solution algorithm that, while almost
instantaneous on general-purpose machines such as personal com-
puters, may not be so readily available on embedded processors.
Reference 1 advocates using explicit closed-form solutions for the
quadratic surface (which arises from quadrics in four dimensions for
three-dimensional ellipsoids) and for the conic curve (arising from
quadrics in three dimensions for two-dimensional ellipses), but this
path can be challenging when we seek to elucidate all possible sit-
uations for the polynomial coefficients to be encountered for the
general case (as derived from the underlying matrices) and, we em-
phasize here, even for obtaining merely the defining characteristic
equation that is to be solved for A. Obtaining the characteristic equa-
tion involves expanding by minors and (Ref. 2, Sec. 2.4.3) identifies
such operations as situations where we should “expect loss of cor-
rect significant digits when small numbers are additively computed
from larger numbers” because “when calculations are performed
on a computer, each arithmetic operation is generally affected by
round-off error” (Ref. 2, Sec. 2.4.1). An exception is when only ma-
trices with integer entries are present throughout all computations,
but such examples are difficult to construct for the purpose of pro-
viding illustrative examples for eigenvalue—eigenvalue problems’
(unless the matrices involved are merely diagonal and correspond-
ing matrix inverses are obtained by merely taking the reciprocal of
the diagonal terms, which yields proper fractions unless all original
diagonal terms are 1).

Closed-form solutions of polynomial equations, such as are cur-
rently advocated in Ref. 1, where coefficients are derived from
the determinants of more general (although positive definite) ma-
trices, still involve the differences of large numbers and typically
exhibit numerical sensitivities as a consequence. Only very simple
special-case numerical examples with diagonal entries are treated
in Ref. 1 to illustrate the behavioral trends and associated classifi-
cations, although the method is general [but messier for general
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three-dimensional covariance matrices exhibiting more arbitrary
orientations and for machine-imposed floating point representations
of the numbers (expected to be encountered within the application
scenario as the more likely category of common formatting for ma-
trix entries)]. According to Ref. 2, Sec. 7.2, “The act of computing
eigenvalues is the act of computing the zeros of the characteristic
polynomial. Galois theory tells us that such a process has to be iter-
ative if n > 4 and so error will arise because of finite termination”
(of such iterative algorithms and the computed answers).

Before we proceed, a distinction is made here between what is
offered in Ref. 1 and what is offered in Ref. 4 as a test for ellipsoid
containment before other historical connections and observations
are made. Reference 2 provides a test for full containment of one
ellipsoid within another only when they share a common center, X,
as between

@-0"HP'x-5<1 and G-BD'(HP'@-0 <1
(1

and the second is fully contained within the first if and only if
Pl < P2 (2)

as a strict positive definiteness condition on matrices that themselves
are each positive definite (as are all well-behaved, nondegenerate co-
variance matrices.>®) A similar requirement on the two covariances
participating in an earlier test for ellipsoid overlap (not containment)
was encountered in Ref. 7 before test could be specified for ellip-
soid overlap (in n dimensions) where the centers of the respective
ellipsoids could differ, and where the particular covariance matrix,
P, (in the case of Ref. 7, this was the solution of the Riccati equa-
tion) is so related to the other covariance matrix, P, (in the case of
Ref. 7, this was the solution of the Lyapunov equation). The proof
of Eq. (2) was easily obtained in Lemma 5.1 of Ref. 7 by just taking
the synchronous difference of the two respective matrix difference
equations that describe their evolution (in discrete time) by demon-
strating that the difference is always positive definite (as it evolves
for all time steps k > 0) as the positive definite matrix within the
bracket below, as pre- and postmultiplied by a nonsingular matrix
(Recall that the computed transition matrix is always nonsingular)
and its transpose (yielding a positive semidefinite intermediary ma-
trix as the first term) and added to a strictly positive definite matrix
(the second term) to yield a strictly positive definite matrix result as

[Patk+1) — Pik +11k)] = &k + 1, k)[P2(k)
— Pk k)]DT(k+1,k) + Pk + 1, k)P (k| k—1)HT

x [HPi(k|k = DH" + R®)] ' HP(k [k — )Tk +1,k)
&)

The associated optimization problem in Ref. 7 had an intriguing
similarity to that in Ref. 1, as explained later. In the case of posing
the simpler problem of a one-dimensional test for the overlap of
scalar Gaussian confidence intervals in Ref. 8 to show how the
same test then generalizes to n dimensions, as a test for the overlap
of Gaussian ellipsoidal confidence regions, the version of the test
in Ref. 8 (simpler than that in Ref. 7) made possible a closed-form
answer to the optimization.

The overlap test of Ref. 1 needs matrix positive definiteness/
semidefiniteness tests along with an implied eigenvalue—eigenvector
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calculation. The test is obtained by exploiting features of a three-
dimensional ellipsoid translation represented as a rotation in four-
dimensional space, a technique familiar in computer graphics
applications (Ref. 9, pp. 479—481), included for the two ellipsoids
of interest as

A
xU‘?SjFx:O for S = (%)Pll Os.c1
0,3 1
with offset
1 0 0 0
M= 0 1 0 O
0 0 1 0
—X; —Xx —x3 1
where
X1
=" @)
X3
1
5 1\ p-1
x! fg’?x =0, s, 2 (?)) B 05 with no offset
13

®)

(without loss of generality, because coordinate origin can always be
moved to perform this numerical test at the location of the second
possible offset, thus causing it to be zeroed out). After Eqs. (4) and
(5) are combined, the test consists of solving for X in

x"A[My s —AT'B]x =0 (6)

to determine whether the underlying two three-dimensional ellip-
soids of primary interest either overlap. Corresponding compatible
eigenvectors also need to be found and tested for consistency to
complete the test of Ref. 1. Observe that a solution to the well-
known generalized eigenproblem AAx = Bx (Ref. 2, Sec. 7.7) is
also a solution of the fundamental Eq. (12) of Ref. 1 because
AMx=Bx < [M —Blx =0=x"[*A — B]x =0. Use of Choleski
factorization and the symmetric QR algorithm is offered in Ref. 2,
Sec. 8.7.2, as a stable solution for the case of A, B being symmetric
and A being positive definite, as is in fact the case for the matri-
ces encountered in Ref. 1 and herein. Observe that Ref. 1 deduces
overlap by focusing on how pairs of eigenvalues of nonsymmet-
ric A~'B behave. Symmetric matrices have all real eigenvalues but
nonsymmetric matrices sometimes have complex eigenvalues.

The clear result of Ref. 1 was obtained by embedding a test for
the overlap of n-dimensional ellipsoids into a test that is performed
in an associated (n + 1)-dimensional space (which, coincidentally,
the analysis of Refs. 7 and 8 also did). However, the resulting test
in Ref. 1 appears to be simpler to implement as a lesser compu-
tational burden (than that of Ref. 7, obtained 30 years earlier) by
Ref. 1 apparently avoiding any intermediate iterative techniques in
solving for the implied eigenvalues and eigenvectors used in making
the determination. However, additional logic still needs to be pro-
grammed for scaling the last component of the eigenvector x to be
1, consistent with the methodology’s acknowledged constraint en-
countered after the n-dimensional problem has been embedded into
(n + 1) dimensions, and for other aspects of unwinding or interpret-
ing a final decision regarding the presence or absence of overlap).
Reference 1, not needing any condition of Eq. (2) to be satisfied,
is for a case more general than that treated in Refs. 7, 8, 10, and
11; however, the numerical calculations of Refs. 7 and 8 are tai-
lored for a stand-alone real-time decision (which was used aboard
U.S. submarines). If one were to attempt to generalize the results
of Ref. 1 beyond two- and three- to n dimensions (as already done
in Ref. 12 for just the theory and proofs®), a modified version of
the computational approach of Refs. 7 and 8 may be useful in this
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endeavor (and perhaps even for two- and three dimensions as well)
because the iterative algorithm used is a contraction mapping with
a geometric rate of convergence (but needs to use double precision
for all matrices and vectors involved).

The solution offered in Ref. 13 is a precedent for what is spec-
ulated later in Ref. 12, Conclusions, as likely being possible in the
future: to be able to solve successfully for the simultaneous inter-
section of several quadratic surfaces. However, intersection of four
(or more) quadratic surfaces in 4-space (consisting of three coor-
dinates of position and receiver’s time clock offset) was obtained
in closed form in Ref. 13. However, despite a closed-form solution
path now being available, global positioning system receivers con-
tinue to use an earlier iterative solution approach that also yields,
as a by-product, an evaluation of associated geometric dilution of
precision, which assesses the goodness of the satellite geometry.

The use of an iterative solution technique is not necessarily at odds
with providing real-time answers and may be the simplest path to
follow. A navigation application using an even easier criterion of
ellipsoid containment in dimensions higher than three is discussed
in Ref. 14. Some missile-chasing-interceptor tracking-sensor pro-
cessing and also some multiplatform rendezvous control strategies
may benefit by focusing on use of six-dimensional ellipsoids that
conjoin three-dimensional position ellipsoids together with three-
dimensional velocity ellipsoids within a combined six-dimensional
hypothesis test, because both position- and velocity-tracking er-
rors originate from a common source, being computed outputs of
the same on-line estimation algorithm from which the target tracks
were generated (i.e., spawned from the same common sensor mea-
surement data as fundamental stimulus) and the associated cross
covariances, as computed, can be seen and verified to be nonzero,
as further evidence that both computed velocity errors and com-
puted position errors are cross-correlated and should be considered
together jointly in a test (which does not preclude also using them
separately afterward in individual three-dimensional tests).
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